Indonesia Nusantara Renewable Grid: HVDC Subsea Cables

Didik Sudarmadi

President Director of PLN Enjiniring

didik.sudarmadi@plne.co.id

July 2021

Outline

- Nusantara grid
- Nusantara Renewable Energy
- Updated technologies
- Case Sumatra-Java
- Case Sumatra-Peninsular
- Case Java-Bali
- Case: template solution for RE
- Solution
- Conclusion

Nusantara Grid (interconnection)

- Purposes:
 - security of supply
 - economical efficiency
 - environmental satisfaction
- Feasibility requirement
 - Technical aspect
 - Economical aspect
 - Legal aspect
- Technologies:
 - HVAC;
 - HVDC:
 - LCC
 - VSC
 - Subsea Cable;
 - OF
 - MI
 - Extruded/XLPE

Tol Listrik Nusantara (Indonesia Supergrid) ^{ref[1]}

Indonesia Supergrid

Interkoneksi Jawa-NTB-NTT

VSC-HVDC Jabar-Sumbawa VSC-HVDC Flores-Sumba VSC-HVDC Flores-Timor HVAC Sumbawa-Flores

Di Pulau Jawa, terminal bisa ada di Jatim, Jateng, dan Jabar

Table 20 Status of Interconnection Projects in Southeast Asia

	Projects	Status
1	Peninsula Malaysia – Singapore	Operating synchronously since 1985 under zero electricity exchange
		Improve system resilience due to larger combined size and short time transfer during emergency
2	Peninsula Malaysia – Thailand	
	Bukit Keteri – Sadao	In operation since 1981 with power transfer capability up to 80 MW
	Gurun – Khlong Ngae (HVDC)	Project in progress and targeted for completion in 2000
3	Sarawak – Peninsula Malaysia (submarine cable HVDC 500Kv and HVAC 275 kV)	This project originally planned to transmit to Peninsula Malaysia 2100 MW of electricity from a 2400 MW Bakun hydropower project in East Malaysia. However the Bakun project has been scaled down for domestic consumption due to financial crisis that hit ASEAN region recently and the interconnection project has been deferred indefinitely
4	Sumatra, Indonesia – Peninsula Malaysia (submarine cable)	Project aimed for bi-directional electricity flow. MOU has been signed by both parties for the development of a mine power plant in Sumatra, Indonesia
		Funding is the constraint for project implementation (private participation as an alternative)
5	Batam, Indonesia – Bintan, Indonesia – Singapore – Johore, Malaysia	Seeking sponsors for financing the study
6	Sarawak, Malaysia – West Kalimantan, Indonesia (150 kV, 250 MW overhead line)	Implementation being prepared with options for the private participation
7	Sabah, Malaysia – Philippines	Seeking sponsors for financing the study
3	Sarawak, Malaysia – Brunei – Sabah Malaysia (275 kV overhead line)	Pre-feasibility study completed and seeking sponsors for financing the feasibility study
9	Thailand – Lao PDR	
	Nam Ngum Dam	In operation since 1972. Currently, the generating capacity is around 150MW and about half of the power generated is exported to Thailand.
	Xe Set Hydro power	In operation since 1991 with the capacity of 45 MW. Most of the power generated are exported to Thailand.
	Hongsa – Mae Moh	No progress has been reported.
	Ban Na Bong – Udon Thani	Discussed in details in the section "GMS Interconnections"
	Savannakhet – Roi Et	
	Boloven – Ubol Ratchathani	
10	Viet Nam – Lao PDR Central Viet Nam – Central Lao PDR	Possibility of inclusion of interconnection between Thailand – Myanmar, Thailand – South China, Viet Nam – Cambodia
	Central Viet Nam Southern Leo PDP	Discussed in details in the section "GMS Interconnections"
11	Thailand – Myanmar	New project – details of the project will be studied by the relevant power authorities/ utilities
12	Viet Nam – Cambodia	Discussed in details in the section "GMS Interconnections" New project – details of the project will be studied by the relevant power authorities/ utilities
		Discussed in details in the section "GMS Interconnections"
13	Lao PDR – Cambodia	New project – details of the project will be studied by the relevant power authorities/ utilities
14	Thailand - Cambodia	New project – details of the project will be studied by the relevant power authorities/ utilities

ref[2]

ref[11]

Asia Pacifik Super Grid

Fig. 2. ASEAN super grid [11].

Fig. 5. Japan-Taiwan-Philippines interconnector linked to the Australia-Indonesia-Philippines Interconnector.

Nusantara Renewable Energy

- Hydro
- Geothermal
- Wind
- PV
- Main issues:
 - Capacity
 - Location of sources vs load center
 - Archipelago
 - Intermittent energy
 - Tropical climate
- Related to technology solution \rightarrow offshore technology

ref[1]

Updated technologies

- Driver/Qualification: Power, Voltage > opt Cost
- HVDC: LCC (Less Losses, mature) vs VSC(weak sys, Q, reverse current)
- HVDC cable: OF(environment), MI, XLPE (space charge)

AC-DC CONVERSION

Systems are operated in AC; therefore DC transmission shall be associated with AC-DC Converter Stations at both ends.

The two networks are not required to be syncronised; they can have different frequency and voltage.

The system, overall, acts like a <u>Generating Power Station</u> that is injecting power into the receiving network.

LINE COMMUTATED CONVERTER

Conventional High-Power Converters use Tyristors (controlled Diodes): the current flows in one direction only and the polarity reversed Line Commutated Converter (LCC).

Therefore, when the power flow is reversed, also the polarity on the HVDC cable is reversed: here an example:

Transferring power from side A to B, clockwise direction of current, cable is at **positive** voltage (+)

Transferring power from side B to A, to keep same direction of current, cable is at negative voltage (-)

ref[3]

VOLTAGE SOURCE CONVERTERS

The New Generation of Converters (**VSC – Voltage Source Converters**) use use IGBT Transistors. The AC voltage is 'built' as liked; there are no constraints on current direction and therefore there is <u>no</u> <u>necessity to reverse the polarity when the power flow</u> <u>is reversed</u>

Therefore, when the <u>power flow is reversed</u>, the direction of current is <u>reversed but the polarity of the HVDC cables is the same</u>: here an example:

Transferring power from side A to B, <u>clockwise</u> direction of current, one cable is at **positive** (+) and one at negative (-) voltage

Transferring power from side B to A, to keep same polarity of cables but with <u>anticlockwise</u> direction of current

Some Considerations on Transmission Systems

Transmission Solution	Advantages	Drawbacks/Limitations	
AC≸ ≸AC AC	Simple No maintenance High Availability	Heavy cable Length (50-150 km) Rigid connection/Power control Require reactive compensation High short circuit currents	
AC DC - LCC Conventional	Less no. of cables, lighter No limits in length Low cable and conv. Losses Power flow control Very high transmiss. power	Needs strong AC networks Cannot feed isolated loads Polarity reversal Large space occupied Special equipment (trafo, filters)	
AC DC - VSC	Can feed isolated loads (oil platforms, wind parks, small islands, etc.), medium power Modularity, short deliv.time Small space and envir.impact No polarity reversal Standard equipment	Higher conversion losses Limited experience Limited power	

ref[3]

HIDO C						
HVDC Converter Types		LCC	VSC			
Switching Device		Mercury Arc (1950s – 1970s)	IGBT (1990s - Present)			
		Thyristor (1970s – Present)	idbi (1990s – Hesenig			
Commutation (Freq	juency Range)	Line Dependent (50-60 Hz)	Self-Commutated (up to few kHz)			
Station Power Loss	i [15, 54, 117]	0.6%-0.8%	~ 1%			
Dowon Flow Dowon	al Machaniam	Voltage Polarity Reversal (slow, causes	Current Direction Reversal (Fast, adds			
rower-riow kevers	ai mechanism	more current stress)	more reliability)			
Notwork Steen ath	Denendenau	Dependent (expensive added	I angely Independent			
Network Strength	Dependency	equipment in weak grids) [58]	Largely independent			
Converter Statio	n Footprint	Larger	Smaller (40-50%) [75]			
Inhonont VAD Co	noumation	EQ 60% of votod MM	None, and can support reactive power			
Inherent VAR Consumption		50-00% of fated MW	to AC grid			
Reactive/Filtering Equipment Requirements		High (Expensive)	Low			
Inherent VAR control and Grid Support		No	Yes			
Inherent AC Grid Black	k-Start Capability	No	Yes			
Fault Handling	AC Side	Lower (Line-Frequency Dependent)	Higher (MVAR Support/Black Start)			
Capability	DC Side	Higher (DC Reactor/SC failure)	Lower (High di/dt rate)			
AC & DC Side Harr	nonics Level	Higher	Lower			
Market Share (# of	(1954-2018)	81%	19%			
Projects) [27]	(2010-2018)	70%	30%			
	May	12 000 MW/+1 100 KV	2,000 MW [118]/ ±500 kV [15]			
Available Rating	Max	12,000 MW/ ±1,100 KV	(525 kV [119]*)			
Combinations*	Average	- 2,000 MW/ ±400 kV	580 MW/ ±220 kV			
Common App	lications	High-Power, Long Distance	Offshore/Cable-based Projects			
Multi-Terminal HV	DC Suitability	Limited	Highly Suitable			
Stations Cost (at High Ratings)		Lower	Higher			

Table 3: Comparison between HVDC transmission technology options

*Current maximum VSC voltage is ±500 kV at Skagerrak 4 project [15], which will be taken over by NordLink in 2020 with ±525 KV [119].

Figure 11: LCC and VSC stations cost evolution with rating based on actual data from [105].

ref[8]

BASIC REQUIREMENTS OF SUBMARINE CABLES

ref[3]

- Long continuous lengths
- High level of reliability with practical absence of expected faults
- Good abrasion and corrosion resistance
- Mechanical resistance to withstand all laying and embedment stresses
- Minimized environmental impact
- Minimized water penetration in case of cable damage

KEY POINTS TO CONSIDER WHEN SELECTING A SUBMARINE CABLE

- Power to be Transmitted
- Route Selection Seabed Geology, Thermal Resistivity of Seabed
- Length of Cable
- Water Depth
- Protection Requirements Burial Depth, Fishing Activity, Marine Activity
- Security of Supply
- Environmental Considerations
- Economic Viability

Mechanical Protection – Armour Design

ref[3]

> SINGLE ROUND WIRE ARMOUR

(it covers the vast majority of the submarine installation requirements, including windmill applications)

- > DOUBLE ROUND WIRE ARMOUR (uni-directional)
- > DOUBLE ROUND WIRE ARMOUR (contra-directional)
- > ROCK ARMOUR
- > PLASTIC COATED WIRES
- > STEEL TAPE ARMOUR PLUS WIRES
- > DOUBLE STEEL STRIP ARMOUR
- > NON-MAGNETIC ARMOUR

Cable Type	Mass Impregnated (MI)	Extruded (XLPE)	
Insulation Type	Paper insulated/Oil filled	Polymer (cross-lined polyethylene)	
First Use for HVDC	1954	1999	
HVDC Applications	LCC & VSC	Mainly VSC (limited suitability for LCC due to voltage reversal)*	
Mechanical Weight/Installation	Higher/Harder	Lower/Easier	
Maximum Rating (Project-Based)	2,200 MW/±600 kV (Western Link) [137]	2,000 MW/±320 kV** (INELFE) [118]	
Longest Distance	580 km (NorNed) [127]	400 km (NordBalt) [147]	

Table 4: Comparison between XLPE and MI DC cables technology.

* Special types of XLPE cables are rarely used in LCC projects (e.g. the ±250 kV Hokkaido-Honshu link in Japan) [146, 148].

** NEMO Interconnector commissioned in 2019 uses 400 kV XLPE cables manufactured by JPS of Japan [151]. ABB has also recently manufactured 525 kV XLPE cables that should be soon in service [39].

Figure 17: XLPE and MI cables comparison: (a) DC cables length up to 2020 [149]. (b) average costs comparison of ~400 kV cables at different ratings, excluding installation which is easier/cheaper for XLPE cables [105].

Figure 15: Qualitative summary of the limited power transfer capacity of DC cables.

AC vs. DC - TRANSMISSION OPTIONS

Spring 2010 ICC Education Subcommittee – 24 March, 2010 Nashville, USA

Cable Technologies

Technologies	Techno	Technology Availability		TABLE 4.3 Limits of Offshore Transmission Systems (Available)		
	2020	2025	2030	System	Voltage Rating	Power Rating
Mass Impregnated HV DC Cables, ±600 kV	9	9	9	DC submaring apple mass impropriated	Un to 1 500 kV	Up to 2500 MW par system
Extruded HV DC Cables, ±320 kV	7 ¹⁾	9	9	DC submarine cable entruded	Up to $\pm 500 \text{ kV}$ Up to $\pm 525 \text{ kV}$	Up to ± 2650 MW per system Up to ± 2650 MW per system
Extruded HV DC Cables, ±525 kV	5	7	9	AC submarine cable	Up to 275 kV	Up to 400 MVA per three-phase cable
Extruded HDVC Cables, $\pm 600 \text{ kV}$	3	5	7	Utfshore DC converters (VSC)	Up to $\pm 320 \text{ kV}$	Up to 1200 MW per converter

Reference: "Table 4.1 Summary table of the technologies and the respective TRL levels"; ENTSO-E TYNDP 2018 Technologies for Transmission System. In this table, Technology Readiness Levels (TRL) are defined as follows:

- TRL 9 actual system proven in operational environment (competitive manufacturing in the case of key enabling technologies; or in space)
- TRL 8 system complete and qualified (some smaller improvements need to be done still)
- TRL 7 system prototype demonstration in operational environment
- TRL 5 technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies)
- TRL 3 experimental proof of concept

1) Note: As extruded cables ±320kV have been in operation since 2013, their technical availability in 2020 is considered to increase to TRL8 (not anymore at TRL7, which is stated in the table above)

ref[10]

Current Rating 2016

Figure 4.1 Current possible ratings for HVDC systems (U_{DC} refers here to the pole voltage, in a bipolar or symmetrical monopole setup, $P = 2 \cdot U_{DC} \cdot I_{DC}$) [2]. The dashed curves indicate announced maximum rates for LCC and VSC HVDC, respectively.

System Component		Medium-Term Technology Outlook	Likely Impact		
HVDC	LCC	Maintaining its position as the main OH UHVDC power transfer technology	Pushing the maximum power transmission limit in Asia beyond 12,000 MW at ±1,200 kV [220]		
Converters	VSC	Available at higher ratings beyond 650 kV at lower normalized costs and station losses [105]	Playing vital role in MTDC development, increasing interconnected markets share and RES utilization (expected 65% of new HVDC projects by 2020 [75])		
HVDC	MI	Higher rating availability (750 kV at 3,000 MW per bipole by 2030 [105])	Pushing the maximum rating limits for projects with UG/submarine cable sections, yet with overall diminishing market share compared to XLPE		
Cables	XLPE	Higher rating availability (650 kV at 2,600 MW per bipole by 2030 [105])	Expanding its market share dominance , parallel to VSC technology progress and fuelled by the need to construct new MTDC links connected to offshore wind farms		
DC Grid	DCCB	Moving from MV prototyping stage to HV implementation around 2030 [220]	Accelerating DC grids implementation. Leading to		
Protection	VSC Based MMC	Enhanced control algorithms for DC fault-blocking at higher ratings [87]	supply and enhanced RES utilization		

Table 6: Summary	y of the medium t	term horizon	for main HVDC	C transmission s	vstem components.

Collectively, Table 7 summarizes several renewable grid penetration targets from major international markets. HVDC links are essential to achieve these targets due to their vital role in long-distance transmission from remote large-scale renewable sources to load centres.

Market		Renewable Energy Target (E/P)*	Target Year	
Europa		32% (E) [233]	2020	
	Luiope	15% (EU member states capacity interconnection) [7]	2030	
China		770 GW (P) [234, 235]	2020	
		(37%-39% of total capacity in 2020 [1, 235])	2020	
Ter di a		227 GW (P) [236]	2022	
	IIIuia	(48% of total capacity in 2022 [1])	2022	
Russia		4.5% (E) [237]	2024	
Brazil		45% (E) [226, 238]	2030	
GCC Countries		80 GW (P) [239]	2030	
Africa**		50% (E) [229]	2030	
IIC A * **	New York	50% (E) [240]	2030	
USA	California	50% (E) [240]	2030	

Table 7: Renewable energy targets in main global markets.

* E/P is used to distinguish (E)nergy generation from (P)ower generation capacity targets.

** This number is based on achieving individual existing national RES penetration targets by 2030 [229].

*** No nationwide target is set, yet IRENA estimates a potential of reaching 27% (E) of RES generation by 2030 with appropriate investment in interconnection infrastructure, in addition to renewable incentives [241].

ref[13]

Case Sumatra-Java

- Solution: HVDC LCC Bipole ± 500 kV, 3000 MW, Submarine Cable (OF,MI)
- Length <u>+</u>36 kmr
- 500 kV DC OF/MI cables
- 2cct: 2 poles + 1 spare

Case Sumatra-Peninsular

- Solution HVDC LCC Bipole ± 250 kV, 600 MW OHL, Submarine Cable (OF,MI)
- 2cct: 2 poles + 1 spare
- Submarine cable (52 km) Telok Gong –Rupat Island;
- Overhead transmission lines (30 km) crossing the Rupat Island;
- Submarine cable (5 km) Rupat Island - Dumai

ref[14]

Case Java-Bali

- Solution HVAC 500 kV, 2000 MVA, Submarine Cable (XLPE)
- Length <u>+</u>6 kmr
- 500 kV AC Extruded cables
- 2cct: 2x3 single core + 1 spare

Case: template solution for RE

- Point to point
- Lumped generating farm
- Power shared

ref[6]

Offshore Wind Parks

Fig. 1 Geographical division of the planned OWP into four clusters with the allocated transmission routes and NVP in the substations (stand 03.2011)

Fig. 2 Schematic representation of the technical variants of OWP grid connection; configuration as HVAC and HVDC systems

ref[6]

Offshore Wind Parks

Project	Transmission Capability	Length	Operation Time
BorWin1	±150 kV, 400 MW	200 km	2010
BorWin2	±300 kV, 800 MW	200 km	2015
BorWin3	±320 kV, 900 MW	160 km	2019
DolWin1	±320 kV, 800 MW	165 km	2015
DolWin2	±320 kV, 900 MW	135 km	2016
DolWin3	±320 kV, 900 MW	160 km	2018
HelWin1	± 250 kV, 576 MW	130 km	2015
HelWin2	±320 kV, 690 MW	130 km	2015
SylWin1	±320 kV, 864 MW	205 km	2015
DolWin6	±320 kV, 900 MW	90 km	2023
DolWin5	±320 kV, 900 MW	130 km	2024

Table 1VSC-HVDC-based offshore wind projects in
operation and in construction in Germany

ref[7]

Multi Terminals VSC

Fig. 1. Network configuration

VSC-MTDC project in Nanao Island: Three sending converter stations, One receiving inverter station Voltage ±160kV, Capacity 200 MW, Capacity 200 MW, Distance: 20km.

ref[9]

Multi Terminals VSC

Fig. 7. HVDC grid topology in Zhangbei [23]

Solution

- Achieving the main purposes of Grid
- Selecting available technologies that meets
 - Technical requirements
 - Optimizing cost of station systems-transmissions-cables

Conclusions

- Technologies is Available for Indonesia Nusantara Renewable Grid
- Need collaboration and commitment of gov/regulator-utilitydevelopers

References

- 1. Pekik Hargo Dahono, Tol Listrik Nusantara, webinar Prakarsa Jaringan Cerdas Indonesia : 8 Oktober 2020
- 2. Asia Pacific Energy Research Centre Institute of Energy Economics, Power Interconnection In The Apec Region Current Status and Future Potentials Japan March 2020
- 3. Ernesto Zaccone, High Voltage DC Land And Submarine Cable System, Practical Considerations Spring 2010 ICC Education Subcommittee 24 March, 2010 Nashville, USA
- 4. Abdulrahman Alassi Et Al., Transmission: Technology Review, Market Trends and Future Outlook, 2019
- 5. Joint ENTSO-E and EUROPACABLE paper, Recommendations to improve HVDC cable systems reliability, 13 June 2019
- 6. Dongping Zhang Et Al., Offshore Wind Parks Grid Connection Projects In German North Sea, 8th International Conference on Insulated Power Cables Jicable'11 19 23 June 2011, Versailles France
- 7. Xiaolin Li Et Al., Nanao multi-terminal VSC-HVDC project for integrating large-scale wind generation, 2014 IEEE PES General Meeting, Conference & Exposition
- 8. M. Barnes, J. Andrews, VSC HVDC Newsletter, Vol. 9, Issue 4., 28.04.2021
- 9. G. Buigues Et Al., Present and future multiterminal HVDC systems: current status and forthcoming developments, International Conference on Renewable Energies and Power Quality (ICREPQ'17) 2017
- 10. Hakan Ergun and Dirk Van Hertem, Comparison of HVAC And HVDC Technologies, Book: HVDC Grids: For Offshore and Supergrid of the Future Chap. 4
- 11. Rodney Itiki Et Al., Technical feasibility of Japan-Taiwan-Philippines HVDC interconnector to the Asia Pacific Super Grid, Renewable and Sustainable Energy Reviews 133 (2020)
- 12. ASEAN Connectivity Project Information Sheets, Jakarta: ASEAN Secretariat, August 2012
- 13. Agung Wicaksono, Indonesia's 35 GW Program: The Relevance Of Coal, Center for Science and Environment (CSE) Conference, New Delhi 17 March 2016
- 14. Listrik Bali Berstatus Siaga, PLN Genjot Proyek Jawa Bali Crossing, https://radarbali.jawapos.com/read/2018/01/18/41536/listrik-bali-berstatus-siaga-pln-genjot-proyek-jawa-bali-crossing