

District Cooling System (DCS)

@ THE Forestias

KAMOL TANPIPAT CEO

EECDT GREEN POWER CO.,LTD.

18 MAY 2021

Presentation Topics

- 1. Introduction to THE Forestias Project
- 2. Central Utility Plant (CUP) at THE Forestias
- 3. District Cooling System (DCS) at THE Forestias
- 4. Energy Savings Calculation and GHG Emission Reduction

The First **DCS** Project of **EECDT**

2. Central Utility Plant (CUP) at THE Forestias

CUP LOCATION

District Cooling Plant (till 2024) 10,000 RT and room for 10,000 RT

TES
26 000PT h Chilled Water Stored

MES and BOP

Smart Control Center

- Control Room 24/7 monitor
- Situation room for use in natural or manmade disaster

Smart Control contractor's scope

Fire Protection System
830 m3, 2x1,500GPM (1 Flectric, 1 Diese

Water and Waste Water System

Retail contractor's scope

Utility Tunnel for Piping Network

IFF contractor's scope

3. District Cooling System (DCS) at THE Forestias

WHY

Why use DCS?

Customer benefits

Infrastructure benefits

Environmental benefits

URBAN HEAT ISLAND PROFILE

Benefits of District Cooling System, DCS

No noise & heat rejection from CDU

Low service & maintenance requirement

Lower energy and maintenance expenses

Having cooling supply when power outage

Un-interruption to cooling supply

Use water as refrigerant, no ozone depletion or global warming issue

WHAT What is DCS?

DCS Components

- 1. Centralized Energy Plant
- 2. Distribution Network

PT

Distribution Network of DCS

Distribution Network

Chilled Water will be distributed to each allotment through Distribution Network in Utilities Tunnel

4. Energy Savings Calculation and GHG Emission Reduction

Energy Savings and GHG Emission Reduction using DCS @ THE Forestias

1. Reduce INSTALLED CAPACITY

Installed capacity using Conventional Air Conditioning System approx.
 32,323 RT

- Installed capacity using DCS approx.

x. 20,000

RT

2. Reduce ENERGY CONSUMPTION + GHG Emission Reduction

- System performance of Conventional Air Conditioning System

1.16 - 1.46 kW/RT

- System performance of DCS

less than 0.75 kW/RT

2. Reduce REFRIGERANTS + GHG Emission Reduction

- Amount of GHG from refrigerants in Conventional AC System (R410A 20,428 kg and R134a 21,120 kg) approx.

 $= 66,749 \text{ tCO}_{2e}$

- Amount of GHG from refrigerants in DCS (R134a 22,000 kg) approx.

= 28,600 tCO_{2e}

Expenses comparison for Residential

SUMMARY RESULTS

	Conventional AC System	District Cooling System, DCS	Savings	% savings
	Baht	Baht	Baht	%
Average energy cost/month	3,015.74	2,770.33	245.41	-8%
Average energy cost / year	36,188.92	33,244.01	2,944.91	
Average expenses / year	41,188.92	33,244.01	7,944.91	-19%

Cost Comparison between Conventional AC and DCS

Conclusion DISTRICT COOLING SYSTEM

- Energy Efficiency
- Spatial Requirement
- Operating Cost
- > Reliability
- > Flexibility
- Maintainability
- Sustainability

- Load sharing
- High performance
- Peak demand management
- Central Utility Plant

Thank You

